

The Hong Kong Satellite Positioning Reference Station (Sat Ref) Data Services Launching Ceremony and Workshop Integration of SatRef System with the GPS Survey in Railway Project Stanley Kar Senior Land Surveyor

4 February 2010

# <u>Content</u>

- 1. Introduction <u>S</u>
- 2. GPS Control Survey for XRL Project (Hong Kong Section)
- 2.1 Background
- 2.2 Methodology
- 3. Summary of Control Survey for West Rail Project
- 4. Comparison of GPS Control Survey between XRL and West Rail Projects
- 5. Application of RTK in XRL Project
- 6. Conclusion



# **1. Introduction**

• MTR Projects employing GPS technology in the establishment of Primary and Secondary Survey Control Network:

| MTR Projects                                                                 | Survey Approach                                                                               |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| a. West Rail (WR)<br>b. Kowloon Southern Link (KSL)                          | Conventional GPS Survey to develop<br>Control Network basing on SMO<br>Trigonometric Stations |
| c. West Island Line (WIL)<br>d. Express Rail Link Hong Kong<br>Section (XRL) | GPS Control Network integrated with<br>SatRef System                                          |

• The Control network is established to provide accurate & consistent control points to facilitate surveys in different construction stages:

| Design stage:           | aerial, topographical, boundary & tree survey          |
|-------------------------|--------------------------------------------------------|
| Construction stage:     | setting-out, monitoring, alignment & record survey     |
| Post-construction stage | tunnel wriggle, as-built, land hand-over & maintenance |



# 2. GPS Control Survey for XRL Project (HK)

#### 2.1 Background

#### Express Rail Link (XRL) provides a cross boundary high-speed rail link between Hong Kong and Mainland

- XRL is part of the national highspeed network
- **Mainland Section** ~ 124 km, 6 stations
- Hong Kong **Section** - 24.6 km; -1 station (terminus)



2/8/2010

# Express Rail Link (XRL) – HK Section



Page 5 2/8/2010

MTR Corporation

# 2.3 Methodology 2.3.1 Define Technical Standards

2.3.2 Network Design and Installation

2.3.3 Instrument and Observation Requirements



2.3.5 Computation and Adjustment

2.3.6 Post-adjustment analysis

2.3.7 Result



#### 2.3.1Define Technical Standards

- Establishing a Survey Control Network using Global positioning System (GPS) method with accuracy up to 1 in 100,000
- Reference to Specification for GPS Surveys (PRC National Standard GB/T 18314-2001 中華人民共和國國家標準,全球定位系統(GPS)規范)
- Technical Specification of Class 'C' GPS Control Network (技術指標) is adopted as Technical Requirement for the control of the GPS survey:
  - Fixed error (A) = 10mm
  - Ratio error (B) = 5ppm
  - Baseline standard error ( $\sigma$ ) =  $\pm \sqrt{[A^2 mm + (B^*L)^2]}$

where L is length of baseline in km



#### 2.3.2 Network Design and Installation

- The control network consists of 7 newly installed monuments and 11 existing trigonometric stations to keep the baseline length within 2 to 4 km to cover the project area
- Six GPS stations of the SatRef system were integrated in





#### Layout Plan of XRL Primary Control Survey Network



MTR Corporation



#### 2.3.3 Instrument and Observation Requirements

- Four dual frequency LEICA SR530 GPS receivers were used for the control survey (Accuracy 3mm+0.5ppm)
- Observation Planning: side to network approach
- Set up field observation procedures

#### **Basic Technical Requirements:**

- The survey was conducted in static mode with each GPS session lasting for min. 60 minutes for synchronized rings
- The logging interval was set as 15 seconds
- Cut-off angle 15 degrees
- GDOP requirements =< 3
- Effective numbers of Satellites = 6



#### 2.3.4 Data Processing and Baseline analysis (I)

- Using LEICA SKI-PRO Software package for computation
- The whole control network consists of 181 baselines;
- A total of 123 Closed Rings is formed by these baselines according to the observation sequence in terms of synchronization and nonsynchronization rings
- Mis-closure of each rings are checked against the technical requirements to confirm the MTR Corporation



#### 2.3.4 Data Processing and Baseline analysis (II)

- Baseline vectors computation precision and acceptance criteria:
- Synchronized ring misclosure <= $\sqrt{3} \sigma/5$

 $(\sigma = \pm \sqrt{[A^2 mm + (B^*L)^2]})$  where L is length of baseline in km, A=10mm & B=5ppm refers to GB/T 18314-2001 of PRC)

• Non-synchronized ring misclosure <=3  $\sqrt{n \sigma}$ 

(where n is the total nos. of side within the ring)

Baseline repeat measurement: the difference is less than 2√2 s

(s = accuracy of GPS receiver 5mm).

among the 181 baseline, 22 are required re-survey;

**Result:** 

• Misclosures of all the closed rings (123 not c) pass the acceptance criteria. 2/8/2010



🛞 MTR

#### 2.3.5 Computation and Adjustment

- Computation software package: Leica SKI-PRO v2.5 software
- Adjustment approach: un-constrained and constrained adjustment

| Approach                               | Un-constrained Adjustment                                                                                        | Constrained Adjustment                                                                       |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Purpose                                | Identify, locate, and eliminate any blunders or outliers                                                         | Ascertain the accuracy of the known stations & constrain the adjustment to the known station |
| Fixed known stations                   | None (one for computation)                                                                                       | 6 SatRef Stations (HKFN, HKKT.1,<br>HKLT, HKOH, HKPC and HKSC)                               |
| Co-ordinate system                     | WGS84                                                                                                            | WGS84                                                                                        |
| Co-ord. transformation                 | none                                                                                                             | To HK1980 Grid                                                                               |
| Acceptance criteria:                   |                                                                                                                  |                                                                                              |
| a. Baseline residuals after adjustment | <= 3 $\sigma$<br>( $\sigma$ = ±√[A <sup>2</sup> mm + (B*L) <sup>2</sup> ] where<br>L is length of baseline in km | <= 2 <i>σ</i>                                                                                |
| b. Baseline ratio error                | <= 1 in 100,000 (10ppm)                                                                                          | <= 1 in 100,000 (10ppm)                                                                      |



#### 2.3.6 Post-Adjustment analysis

- One SatRef station (HKST.1) was selected as a check point to verify the accuracy of the adjustment results
- (difference in coordinates was 13mm)
- 11 existing trigonometric stations were used in the control network
- (average difference in coordinates was 19mm)
- Field check by Totalstation on distance and angles for selected short baselines

(not practical to base-line over 1km)



## 2.3.7 Results

| Point Id | Northing   | Easting    | Orth. Height | Quality Pos. | Quality Hgt. |
|----------|------------|------------|--------------|--------------|--------------|
| HKFN     | 839454.966 | 832285.140 | 44.460       | 0.000        | 0.000        |
| HKKT.1   | 833946.138 | 824913.087 | 38.062       | 0.000        | 0.000        |
| HKLT     | 830988.470 | 817709.927 | 129.666      | 0.000        | 0.000        |
| нкон     | 812103.834 | 841595.061 | 168.689      | 0.000        | 0.000        |
| HKPC     | 816235.675 | 821939.903 | 21.367       | 0.000        | 0.000        |
| HKSC     | 820351.389 | 832591.320 | 23.119       | 0.000        | 0.000        |
| HKST.1   | 828445.570 | 837026.635 | 261.541      | 0.005        | 0.012        |
| N01      | 817333.463 | 835079.094 | 22.632       | 0.028        | 0.049        |
| N02      | 817754.573 | 834158.796 | 4.500        | 0.015        | 0.030        |
| N03      | 818559.691 | 834893.301 | 200.671      | 0.021        | 0.036        |
| N04      | 818268.790 | 835657.406 | 94.969       | 0.014        | 0.026        |
| N05      | 819810.279 | 834839.914 | 155.024      | 0.008        | 0.013        |
| N06      | 820098.268 | 835211.341 | 149.704      | 0.011        | 0.017        |
| N07      | 822456.801 | 828677.534 | 172.524      | 0.018        | 0.037        |
| N08      | 820770.858 | 834209.881 | 51.600       | 0.008        | 0.015        |
| N09      | 820813.820 | 835443.886 | 51.531       | 0.007        | 0.014        |
| N10      | 821804.210 | 833425.861 | 172.599      | 0.013        | 0.028        |
| N11      | 822851.969 | 833450.685 | 173.759      | 0.011        | 0.020        |
| N12      | 823928.766 | 832035.832 | 342.898      | 0.010        | 0.018        |
| N13      | 825720.848 | 829850.479 | 189.146      | 0.011        | 0.022        |
| N14      | 826015.632 | 833096.828 | 337.919      | 0.009        | 0.018        |
| N15      | 830295.228 | 830063.963 | 693.771      | 0.023        | 0.048        |
| N16      | 828757.126 | 827260.218 | 579.717      | 0.010        | 0.019        |
| N17      | 832318.060 | 828267.605 | 38.096       | 0.021        | 0.049        |
| N18      | 831883.651 | 830305.975 | 546.012      | 0.011        | 0.024        |
| N19      | 832090.057 | 826351.149 | 25.521       | 0.009        | 0.020        |
| N20      | 833230.693 | 828170.769 | 63.849       | 0.010        | 0.019        |
| N22      | 833718.106 | 825489.379 | 7.206        | 0.019        | 0.040        |
| N23      | 833945.122 | 824907.889 | 34.128       | 0.014        | 0.028        |
| N24      | 836091.490 | 824895.007 | 375.588      | 0.009        | 0.016        |
| N25      | 836039.036 | 826713.928 | 573.480      | 0.011        | 0.019        |
| N26      | 838108.576 | 821424.350 | 3.281        | 0.013        | 0.024        |
| N27      | 839433.028 | 824816.446 | 67.345       | 0.014        | 0.027        |
| N28      | 838477.950 | 818097.269 | 69.846       | 0.016        | 0.031        |
| N29      | 841342.107 | 826318.508 | 67.506       | 0.020        | 0.039        |

Weakest Point



#### 3. Summary of GPS Control Survey for West Rail Project

- GPS Control Network was established in 1997 with Accuracy is 1 in 100,000
- Technical standard refer to PRC National Standard of Specification for GPS Survey (GB/T)
- Survey Origin: Four Major Trigonometic Stations (72, 91, 96 & 97) were used as fixed stations
- Instrument: Four dual frequency GPS receivers were used for the control survey
- Software: GPS field data was processed by Leica software SKI Version 2.10; and Control Network was adjusted by FILL NET Version 3.0 of ASHTECH INC.



#### Layout plan of WR Primary Control Survey Network





# 4. Comparison of GPS Control Survey between XRL and West Rail Projects (I)

| Summary:                 | XRL Project                                 | West Rail Project                                      |  |
|--------------------------|---------------------------------------------|--------------------------------------------------------|--|
| Accuracy requirement     | 1 in 100,000                                | 1 in 100,000                                           |  |
| Network coverage         | 26km                                        | 32km                                                   |  |
| Survey Origins           | 6 SatRef GPS stations                       | 4 Trig. Stations                                       |  |
| GPS Receiver             | 4 (dual frequency)                          | 4 (dual frequency)                                     |  |
| Computation Software     | Leica SKI-PRO Ver. 2.5                      | Leica SKI Ver. 2.10, ASHTECH INC.<br>FILL NET Ver. 3.0 |  |
| Nos. of Control Stations | 28(primary)+ 131(Secondary)=159             | 18(primary)+184(secondary)=202                         |  |
| Nos. of Baselines        | 181(primary)+ 661(secondary)=842            | 55(primary)+ 471(secondary)= <b>521</b>                |  |
| Nos. of Closed rings     | 123(primary)+ 493(secondary)=616            | 88(primary)+ 326(secondary)= <b>414</b>                |  |
| Observation sessions     | Min. 60 minutes<br>150 sessions/ 34 man-day | 120 minutes<br>138 sessions/ 62 man-day                |  |
| Station Installation     | 25 man-day                                  | 40 man-day                                             |  |
| Data processing          | 10 man-day                                  | 15 man-day                                             |  |



# 4. Comparison of GPS Control Survey between XRL and West Rail Projects (II)

|                                                     | XRL                                                                                                                       | WR                                                                                                                                                  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Survey Approach                                     | Network integrated with SatRef<br>System (many-to-1)                                                                      | Conventional GPS survey method<br>based on Trigonometry stations (2-to-1)                                                                           |
| Network Design                                      | Simplify – less control points,<br>Allow direct linkage from SatRef<br>stations to unknown points                         | Complicate – more control points,<br>Strengthen of network depends on<br>numbers of control stations                                                |
| Error (known station)                               | No instrument error as SatRef stations are setup permanently                                                              | Instrument error caused by repeat setup at known stations on task basis                                                                             |
| Accuracy                                            | Higher: more redundancy<br>observations directly from known<br>stations; error spread through the<br>network consistently | Lower: redundancy observations is<br>limited by the constrains of instruments<br>and manpower; error may distribute<br>through the network unevenly |
| Resources (manpower,<br>transportation, instrument) | Reduced: no need to occupy instrument on known stations                                                                   | Increased: manpower and instrument requires for every baseline connecting to known stations                                                         |
| Time / progress                                     | Fast; easy planning as SatRef station operating round-the-clock                                                           | Slow; careful planning, constraint with resources                                                                                                   |
| Cost                                                | Lower                                                                                                                     | Higher                                                                                                                                              |



# 5. Application of Real Time Kinematic (RTK) mode by using SatRef System and Ntrip Technologies in XRL Project applications:

- Setting out land boundary at remote site area
- Topographical survey
- Tree survey

#### Feedback:

- Convenient
- Rapid response
- More accurate
- Positioning reliable
- Less manpower





#### 5.1 GPS Survey with Real Time Kinematic (RTK) mode

(a) Traditional RTK Method (1 to 1)



(b) SatRef system network RTK (many to 1)



N-trip communication (Networked Transport of RTCM via Internet Protocol)



# 6. Conclusion

- The launching of the SatRef system provides a variety of GPS applications in land and engineering survey industry and forms a very strong foundation for future development of surveying activities
- With the integration of the GPS control network to the SatRef system for XRL project, the advantages are clearly identified:
- a. Improve in overall accuracy
- **b. High efficiency & productivity**
- c. Less manpower resources
- d. Reduce operational cost
- Furthermore, Network-RTK GPS with N-trip technology becomes the main trend in field data capturing

MTR Corporation

2/8/2010 Page 22





## **End of Presentation**

Q & A